International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 ISSN 2229-5518

Generalization of n-Perfect Ring and Cotorsion dimension over on Strong n-Perfect Ring

By Rahul Dravid (Research Scholar, Department of Mathematics Bhagwant University Ajmer Raj.) Asst. Prof. SoftVision College Indore Email : rahuld78@yahoo.co.in Swapna Modi M.Sc. Asst. Prof. SoftVision College Indore Email : swapna270627@gmail.com

Abstract : A ring is called n-Perfect ($n \ge 0$) if every flat module has projective dimension less or equal than n. In this paper we introduce "Strong n-Perfect rings" which is in some way a generalization of the notion of "n-Perfect rings". We show that Strong n-Perfectness relates through homology with some homological dimensions of rings. We study strong n-Perfectness in some known ring construction. Finally give some examples of strong n-Perfect ring which satisfies given special conditions.

.....

Key words : Perfect ring , n-Perfect rings (finitstic) , strong n-Perfect ring , cotorsion dimension , Homological dimension, Pullback ring.

Introduction : Throughout this paper assume all rings are commutative with identity element and all modules are unitary. Let R be a ring and M be a R-module. We use pd_R(M), id_R(M), fd_R(M) to denote the usual projective, injective and flat dimension of M. We use gldim(R) and wdim(R), sdim(R) to denote classical global dimension, weak dimension and strong dimension of R. If R is an integral domain, we denote its quotient field by qf(R).

In [1] Bass proved that the perfect rings are those rings whose every flat module is projective. He links these rings with the finitistic projective dimension of ring.

A ring R is called strong n-Perfect then gldim(R) \leq n if and only if wdim (R) \leq n or in other words sdim (R) >n \Rightarrow sgldim (R) >n.

The classes of rings we will define here are I some ways generalization of the notion of n-Perfect ring over strong n-Perfect ring. Let n be a positive integer. A commutative ring R is called strong n-Perfect if any R module of flat dimension less or equal than n have projective dimension less or equal than n. If n=0 then strong 0-Perfect ring are the perfect ring.

Remark : Every strong n-Perfect ring is also an n-Perfect ring.

In this paper we investigate the transfer of n-Perfect ring to strong n-Perfect property in some known ring constructions. We study the strong n-Perfect property of pullbacks and of finite direct product.

Recall that the S-finitistic projective dimension of R denoted by Sfpd (R) and defined

SFPD (R)=sup{spd_R(M)|M, R module with spd_R(M)<n}

Example : The following are equivalent for a commutative ring R :-

- 1. R is Perfect then R is strong Perfect.
- 2. R is finite direct product of local rings, each with T- nilpotent maximal ideal { for some index m, $a_1, a_2, \dots, a_m=0$ }
- 3. FPD(R) = 0 then SFPD(R) = 0

Later in [10] Jenson proved that for a ring FPD(R) $n \ge 0$ then every flat R-module has projective dimension at most n then we can conclude that if FPD(R)=n =SFPD(R) (n \ge 0) then every strongly flat R module has projective dimension at most n.

Enochs, Jenda and Lopez called these rings n-Perfect and thus it is strong n-Perfect. Now by homological characterized of rings by cotorsion dimension introduced by Ding and Mao.

Definition of Cotorsion dimension :

Let R be a ring the cotorsion dimension of an R module M denoted by $cd_R(R)$ is the least positive integer n for which $Ext_R^{n+1}(F, C) = 0$, for all flat R module F.

The global cot.dim(R) denoted by c.gldim(R) is the quantity C-gldim(R)= sup.{cd_R(M)|M, R module}

If $cd_R(M)=0$ then it is known as 0 cotorsion modules.

Proposition 1.1 :-For a positive integer n, R is n-Perfect if and only if c-gldim(R) \leq n and hence it is strong n-Perfect if C-gldim(R) \leq n \Leftrightarrow wdim(R) \leq n.

Proposition 1.2 :- For any ring R SC-gldim(R) \leq SFPD(R).

Early in [9], Grason and Raynold defined d(R) as the supremum of the projective dimension of all flat R-modules then d(R) coincides with the s.gldim(R), they studied this invariant of rings and mentioned that Jensen had an example of a ring R that satisfy the strict inequality SC-gldim(R) \leq SFPD(R).

Now we give some general results on the global inequality $gldim(R) \le c-gldim(R)+wdim(R)$ establish by Ding and Mao in [5] to the finitistic dimension and thus we represent this inequality for strong ring

 $S.gldim(R) \le Sc-gldim(R)+S.dim(R)$

S.gldim(R) <n+n \Rightarrow S.gldim(R) <2n

since for strong n-perfect ring S.c-gldim(R) \leq n

 $S.gldim(R)=s.dim(R) \le n \Leftrightarrow gldim(R) \le n \Leftrightarrow wdim) \le n$

In sec. 2 we give general result on the global cotorsion dimension of rings is used to relate the strong global dimension over weak and the global dimension.

In sec. 3 we investigate strong n-Perfectness in some known ring construction such that we compute the strong global cotorsion dimension of polynomial rings, reducible to polynomial rings, finite direct product of rings and D+M rings. This study allows us to give various example of Strong n-Perfect rings satisfying special conditions given in sec.4.

2. General Results :

Theorem 2.1 : For any ring R the following inequalities $S.gldim(R) \le S.cgldim(R)$ + sdim(R) holds true.

Proof : Since $gldim(R) \le c.gldim(R) + wdim(R)$

 $c.gldim(R) \le n \Leftrightarrow wdim(R) \le n$

S.gldim(R)= Sdim(R) $\leq n \Leftrightarrow$ gldim(R) \leq wdim(R) $\leq n$

In particular

- If S.cgldim(R)=0 i.e R is Strong Perfect then Sdim(R)=Sgldim(R) ≤ n since R is perfect then c.gldim(R)=0⇒wdim(R)= gldim(R) ≤ n
- 2. If Sdim(R)=0 {wdim(R)=0} i.e R is von Neumann regular then Scgldim(R)= Sgldim(R).

Now we generalize this result to the finitistic projective and flat dimensions. Recall that the strongly finitistic flat dimension of R SFFD(R) is defined as follows SFFD(R) = sup{sfd_R(M)|M, R module with sfd_R(M)< ∞ }

Theorem 2.2 : For any ring R the following inequalities SFFD(R) \leq SFPD(R) \leq Scgldim(R)+ SFFD(R) hold true.

Proof : To prove the inequality SFFD(R) \leq SFPD(R) we can assume that SFPD(R)=n is finite. Consider R module M with finite flat dimension from Jensen's Proposition 1.2 M has also finite projective dimension which is at most n then we have sfd_R(M) \leq spd_R(M) \leq n. It means that SFFD(R) \leq SFPD(R).

Now we prove the second inequality for that we can assume that S.cgldim(R) = n and SFFD(R) = m are finite. Consider an R module M with finite projective dimension then it has finite flat dimension which is at most m then there exist an exact sequence of R modules

 $0 \rightarrow F \rightarrow P_{m-1} \rightarrow \dots \rightarrow P_0 \rightarrow N \rightarrow 0$

Where P_i are projective and F is flat. From proposition 1.1 spdR(F) $\leq n$. finally using the above sequence we get spdR(M) \leq n+m. This completes the proof.

Proposition 2.3 : If a ring R satisfies SFFD(R)=1 and S.cgldim(R)<SFPD(R)< ∞ then SFPD(R) =S.cgldim(R)+1 .

Proof : Let SFPD(R)=n< ∞ for an integer n≥1 then there is an R module M that satisfies

spdR(M)=n. hence for a short exact sequence of R modules $0 \rightarrow F \rightarrow P \rightarrow M \rightarrow 0$ where P is projective and F is flat. Since SFFD(R)=1 then spd_R(F)=n-1 then equality holds since

S.cgldim(R) < SFPD(R).

Corollary : If a ring R satisfies SFFD(R)=m and S.cgldim(R)<SFPD(R) $< \infty$ then SFPD(R) =S.cgldim(R)+m.

Recall that the S finitistic injective dimension of a ring R is denoted by SFID(R) and defined by

SFID(R) = sup{sidR(M)|M, R module with sid_R(M) < ∞ }.

Similarly we can define the finitistic cotorsion dimension of a ring R denoted by SFCD(R) and defined by SFCD(R) = sup{ $scd_R(M)|m$, R module with $scd_R(M) < \infty$ }

Theorem 2.4 : For any ring R with finite strong dimension the following inequalities

 $SFCD(R) \le SFID(R) \le SFCD(R) + S.dim(R)$

It involves lemma which relates the cotorsion dimension and the injective dimension of modules.

Lemma 2.5 : Let R be a ring for any R module M the following inequalities

 $Scd(M) \leq Sid(M) \leq Scd(M) + Sdim(R)$ hold and true.

Proof : First we prove the lemma we can assume that Scd(M) = m and Sdim(R) = n are finite. Let N be any R module and consider an exact sequence $0 \rightarrow F \rightarrow P_{n-1} \rightarrow \dots \rightarrow P_0 \rightarrow N \rightarrow 0$ where Pi are projective modules and then F is a flat module. Since Sdim(R) = n.

We have Ext_R^{m+n+1} (N,M) $\cong Ext_R^{m+1}(F,M)=0$. Since $Scd_R(M)=n$ therefore $Sid_R(M) \leq m+n$

Now we prove Theorem 2.4

Let SFID(R)=n is finite. M be an R module with finite cotorsion dimension from lemma

IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 ISSN 2229-5518

 $Sid(M) \leq Scd(M) + Sdim(R)$ which is finite then Sid(M) is finite and so $Scd(M) \leq Sid(M) \leq n$

We prove SFID(R) \leq SFCD(R) + Sdim(R)

Let Sdim(R)=n, SFCD(R)=m are finite. Let M be an R module with finite injective module dimension then from lemma Sid(M) \leq Scd(M)+Sdim(R) \leq m+n.

3. Strong n-Perfectness in Ring Construction

Firstly we compute the strong global cotorsion dimension of polynomial ring and family of polynomial rings.

Theorem 3.1 ; Let R[X1, X2, ..., Xn] be a polynomial ring in n indeterminates over a ring R then for a positive integer m , R is m strong perfect if and only if $R[X_1, X_2, ..., X_n]$ is m+n Perfect strongly.

 $ScgIdim(R[X_1, X_2, \dots, X_n]) = ScgIdim(R)+n$

Proposition 3.2 : Let (R_i) where i=1,2,3,.....m be a family of ring S then $\prod_{i=1}^{m} R_i$ is a strong n Perfect ring if and only if R_i is a strong n Perfect ring for each i=1,2,3,....m.

Proof : Let (R_i) where i=1,2,3.....m be a family of rings and Mi be an R_i Module for i=1,2,3....m. we have

 $SpdR_{1}xR_{2}(M_{1}xM_{2}) = Sup\{SpdR_{1}(M_{1});SpdR_{2}(M_{2})\}....(1)$ SfdR_{1}xR_{2}(M_{1}xM_{2}) = Sup\{SfdR_{1}(M_{1});SfdR_{2}(M_{2})\}....(2)

 $Sid_{R1xR2}(M_1xM_2) = Sup{SidR_1(M_1); SidR_2(M_2)}.....(3)$

We prove theorem by induction method. Let it is true for m=2. Let R_1 and R_2 be two rings such that R_1xR_2 is a strong n-Perfect and let M_1 be an R_1 module such that $SfdR_1(M_1) \le n$, let M_2 be an R_2 module such that $SfdR_2(M_2) \le n$ then $Sfd_{R_1xR_2}(M_1xM_2) = Sup\{sfdR_1(M_1); SfdR_2(M_2)\}$ by (2)

 $\begin{array}{l} \operatorname{Spd}_{\mathsf{R1xR2}}(\mathsf{M_1xM_2}) \leq n \text{ since } \mathsf{R_1xR_2} \text{ is strong } n\text{-}\mathsf{Perfect thus} \\ \operatorname{Spd}_{\mathsf{R1xR2}}(\mathsf{M_1xM_2}) = \operatorname{Sup}\{\operatorname{SpdR_1}(\mathsf{M_1}); \operatorname{SpdR_2}(\mathsf{M_2})\} \text{ therefore } \operatorname{SpdR_1}(\mathsf{M_1}) \leq n \text{ and } \operatorname{SpdR_2}(\mathsf{M_2}) \leq n \\ \text{and so } \mathsf{R_1} \text{ and } \mathsf{R_2} \text{ are strong } n \text{ perfect rings thus } \operatorname{Sid}_{\mathsf{R1xR2}}(\mathsf{M_1xM_2}) \leq n \text{ since } \mathsf{R_1xR_2} \text{ is strong } n \\ \operatorname{Perfect therefore } \operatorname{SidR_1xR_2}(\mathsf{M_1xM_2}) = \operatorname{Sup}\{\operatorname{SidR_1}(\mathsf{M_1}); \operatorname{SidR_2}(\mathsf{M_2})\} \text{ by } (3) \text{ hence } \operatorname{SidR_1}(\mathsf{M_1}) \leq n \text{ and } \\ \operatorname{SidR_2}(\mathsf{M_2}) \leq n. \end{array}$

Conversely : let R_1 and R_2 be two strong n-Perfect rings. Let $M_1 x M_2$ be an $R_1 x R_2$ module where Mi is an Ri module for each i=1,2 such that SfdR1xR2($M_1 x M_2$) $\leq n$ thus SfdR1(M_1) $\leq n$, SfdR2(M_2) $\leq n$ and SpdR1xR2($M_1 x M_2$) $\leq n$ thus SpdR1(M_1) $\leq n$

 $\operatorname{SpdR}_2(M_2) \le n$ and $\operatorname{SidR1xR2}(M1xM2) \le n$ thus $\operatorname{SidR}_1(M_1) \le n$, $\operatorname{SidR}_2(M_2) \le n$ because R_1 and R_2 are strong n-Perfect ring and so $R_1x R_2$ is a strong n-Perfect ring.

Cotorsion dimension under change of rings

Theorem 4.1 : let β : $R_i \rightarrow S_i$ be a surjective ring homomorphism where R_i and S_i be family of rings R and S, i=1,2,3...m then

- If M_{Si} is a rinht Strong S_i module then Scd(M_{Ri}) ≤Scd(M_{Si})moreover if S_{Ri} is a flat right R module then Scd(M_{Si})= Scd(M_{Ri})
- 2. If SRi is a flat right Ri module and MRi is a cotorsion right Ri module then Hom_{Ri}(Si,Mi) is a cotorsion right right Si modle and hence a cotorsion right Ri module where i=1,2,3,.....m

Proof :

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 ISSN 2229-5518

1. We may assume $Scd(M_{Si})=n<\infty$ there exist an exact sequence

 $0 \longrightarrow \mathsf{Mi} \longrightarrow C_i^0 \longrightarrow C_i^1 \longrightarrow C_i^2 \longrightarrow \dots \longrightarrow C_i^{n-1} \longrightarrow C_i^n \longrightarrow 0$

Where C^j is a cotorsion right Si module , j=1,2,....n each C^j is also cotorsion as a right Ri module so Scd(M_{Ri}) $\leq n$.

If S_{Ri} is a flat right Si module we claim $Scd(M_{Si}) \leq Scd(M_{Ri})$. We assume $Scd(MRi)=n<\infty$. Let Fi be a flat right Si module then Fi is a fat right Ri module thus $Ext_{Si}^{n+1}(F_{Si}, M_{Si})=Ext_{Ri}^{n+1}(F_{Ri}, M_{Ri})=0$ therefore $Scd(M_{Si}) \leq n$ and hence $Scd(MSi)=Scd(M_{Ri})$

2 by hypothesis $Ext_{Ri}^{1}(Si,Mi) = 0$ let X be a flat right Si module then X is a flat right Ri moue thus $Ext_{Si}^{n+1}(X,HomR(Si,Mi) = Ext_{Ri}^{n+1}(X,Mi) = 0$

Therefore Hom_R(Si,Mi) is a cotorion right Si module and hence a cotorsion right Ri module.

Corollary 4.2 : Let π : Ri \rightarrow Si bea surjective ring homomorphism and SRi is a flat right Ri module then r.cotD(Si) \leq r.cotD(Ri)

Acknowledgements

The author would like to express their sincere thanks for the referee for his helpful suggestions.

References

- 1. H. Bass, Finitistic dimension and a homological generalization of semi primary rings, Trans. AmerMath.soc 95(1960).
- 2. D. Bennis and N. Mahdou, Global Gorenstein dimension of polynomial rings and of direct products of rings, accepted for publication in Houston j. Math.
- 3. N. Bourbaki, Algebra Homologique(1980)
- 4. N. Ding and L. Mao, The cotorsion dimension of modules and rings, Abelian groups, rings, modules and homological algebra, Pure Applied Math.92005)
- 5. E.E. Enochs, O.M.G. Jenda and J.a Lopez Ramos, Dualizing modules and n-perfect rings, Proc. Edinb. Math. Soc.48(2005)