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Abstract : A ring is called n-Perfect (n≥0) if every flat module has projective dimension less or equal than 
n. In this paper we introduce “Strong n-Perfect rings” which is in some way a generalization of the notion 
of “n-Perfect rings”. We show that Strong n-Perfectness relates through homology with some homological 
dimensions of rings. We study strong n-Perfectness in some known ring construction. Finally give some 
examples of strong n-Perfect ring which satisfies given special conditions. 
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1. Introduction : Throughout  this paper assume all rings are commutative with identity element and all 

modules are unitary. Let R be a ring and M be a R-module. We use pdR(M), idR(M), fdR(M) to 
denote the usual projective, injective and flat dimension of M. We use gldim( R) and wdim( R) , sdim( 
R) to denote classical global dimension, weak dimension and strong dimension of R. If R is an 
integral domain, we denote its quotient field by qf( R). 

      In [1] Bass proved that the perfect rings are those rings whose every flat module is projective. 
He links these rings with the finitistic projective dimension of ring. 
 A ring R is called strong n-Perfect then gldim( R) ≤ n  if and only if wdim (R) ≤ n or in other 
words  sdim ( R) >n ⇒ sgldim (R) >n . 
The classes of rings we will define here are I some ways generalization of the notion of n-Perfect 
ring over strong n-Perfect ring. Let n   be a positive integer. A commutative ring R is called strong 
n-Perfect if any R module of flat dimension less or equal than n have projective dimension less or 
equal than n. If n=0 then strong 0-Perfect ring are the perfect ring. 
Remark :  Every strong n-Perfect ring is also an n-Perfect ring. 
                     In this paper we investigate the transfer of n-Perfect ring to strong n-Perfect property 
in some known ring constructions. We study the strong n-Perfect property of pullbacks and of 
finite direct product. 

Recall that the S-finitistic projective dimension of R denoted by Sfpd (R ) and defined  

SFPD (R )=sup{spdR(M )|M, R module with spdR(M )<n}  

Example : The following are equivalent for a commutative ring R :- 

1. R  is Perfect then R is strong Perfect. 

2. R  is finite direct product of local rings, each with T- nilpotent maximal ideal { for some index 
m, a1,a2………am=0} 

3. FPD(R ) =0 then SFPD(R )=0 

Later in [10] Jenson proved that for a ring FPD(R ) n≥0 then every flat R-module has 
projective dimension at most n then we can conclude that if FPD(R )=n =SFPD(R ) (n≥0) 
then every strongly flat R module has projective dimension at most n. 
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Enochs, Jenda and Lopez called these rings n-Perfect and thus it is strong n-Perfect. Now by 
homological characterized of rings by cotorsion dimension introduced by Ding and Mao. 

Definition of Cotorsion dimension : 

Let R be a ring the cotorsion dimension of an R module M denoted by cdR(R ) is the least 
positive integer n for which 𝐸𝑥𝑡𝑅𝑛+1(𝐹,𝐶) = 0, for all flat R module F. 

The global cot.dim(R ) denoted by c.gldim(R ) is the quantity C-gldim(R )= sup.{cdR(M )|M, R 
module} 

If cdR(M )=0 then it is known as 0 cotorsion modules. 

Proposition 1.1 :-For a positive integer n, R is n-Perfect if and only if c-gldim(R )≤n and hence 
it is strong n-Perfect if C-gldim(R ) ≤ 𝑛 ⇔wdim(R ) ≤ 𝑛. 

Proposition  1.2 :- For any ring R SC-gldim(R ) ≤ SFPD(R ). 

                           Early in [9], Grason and Raynold defined d(R ) as the supremum of the 
projective dimension of all flat R-modules then d(R ) coincides with the s.gldim(R ), they 
studied  this invariant of rings and mentioned that Jensen had an example of a ring R that 
satisfy the strict inequality SC-gldim(R ) ≤SFPD(R ). 

Now we give some general results on the global inequality gldim(R)≤c-gldim(R)+wdim(R) 
establish by Ding and Mao in [5] to the finitistic dimension and thus we represent this 
inequality for strong ring  

S.gldim(R) ≤ Sc-gldim(R)+S.dim(R) 

S.gldim(R )<n+n⇒ S.gldim(R ) <2n 

since for strong n-perfect ring S.c-gldim(R )≤ n 

S.gldim(R)=s.dim(R) ≤n⇔gldim(R)≤n⇔wdim)≤ n 

In sec. 2 we give general result on the global cotorsion dimension of rings is used to relate 
the strong global dimension over weak and the global dimension. 

In sec. 3 we investigate strong n-Perfectness in some known ring construction such that we 
compute the strong global cotorsion dimension of polynomial rings, reducible to polynomial 
rings, finite direct product of rings and D+M rings. This study allows us to give various 
example of Strong n-Perfect rings satisfying special conditions given in sec.4. 

2. General Results : 

Theorem 2.1 : For any ring R the following inequalities S.gldim(R) ≤ S.cgldim(R)+ sdim(R) holds 
true. 

Proof : Since gldim(R) ≤ c.gldim(R)+ wdim(R) 

                         c.gldim(R) ≤ n⇔wdim(R) ≤ n 

                         S.gldim(R)= Sdim(R) ≤ 𝑛 ⇔gldim(R ) ≤ wdim(R) ≤ 𝑛 

In particular 

1. If S.cgldim(R)=0 i.e R is Strong Perfect then Sdim(R)=Sgldim(R)  ≤ 𝑛  since R is perfect then 
c.gldim(R)=0⇒wdim(R)= gldim(R) ≤ 𝑛 

2. If Sdim(R)=0 {wdim(R)=0} i.e R is von Neumann regular then Scgldim(R)= Sgldim(R). 
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Now we generalize this result to the finitistic projective and flat dimensions. Recall that the 
strongly finitistic flat dimension of R SFFD(R) is defined as follows SFFD(R ) =sup{sfdR(M )|M, R 
module with sfdR(M )<∞  } 

Theorem 2.2 : For any ring R the following inequalities SFFD(R ) ≤ SFPD(R ) ≤ Scgldim(R )+ 
SFFD(R ) hold true. 

Proof : To prove the inequality SFFD(R ) ≤ SFPD(R ) we can assume that SFPD(R )=n is finite. 
Consider R module M with finite flat dimension from Jensen’s Proposition 1.2 M has also finite 
projective dimension which is at most n then we have sfdR(M ) ≤spdR(M ) ≤ 𝑛. It means that 
SFFD(R) ≤ SFPD(R). 

Now we prove the second inequality for that we can assume that S.cgldim(R )=n and SFFD(R 
)=m are finite. Consider an R module M with finite projective dimension then it has finite flat 
dimension which is at most m then there exist an exact sequence of R modules  

0→F→Pm-1→…………………→P0→N→0 

Where Pi are projective and F is flat. From proposition 1.1 spdR(F ) ≤ 𝑛. finally using the above 
sequence we get spdR(M ) ≤n+m. This completes the proof.  

Proposition 2.3 : If a ring R satisfies SFFD(R)=1 and S.cgldim(R )<SFPD(R )< ∞ then SFPD(R ) 
=S.cgldim(R)+1 . 

Proof : Let SFPD(R )=n<∞ for an integer n≥1 then there is an R module M that satisfies  

spdR(M )=n. hence for a short exact sequence of R modules 0→F→P→M→0 where P is 
projective and F is flat. Since SFFD(R )=1 then spdR(F)=n-1 then equality holds since  

S.cgldim(R )<SFPD(R ). 

Corollary : If a ring R satisfies SFFD(R)=m and S.cgldim(R )<SFPD(R )< ∞ then SFPD(R ) 
=S.cgldim(R)+m . 

Recall that the S finitistic injective dimension of a ring R is denoted by SFID( R ) and defined by  

SFID(R )= sup{sidR(M )|M, R module with sidR(M )< ∞}. 

Similarly we can define the finitistic cotorsion dimension of a ring R denoted by SFCD(R ) and 
defined by SFCD(R )= sup{ scdR(M )|m, R module with scdR(M ) <∞} 

Theorem 2.4 : For any ring R with finite strong dimension the following inequalities 

SFCD(R) ≤ SFID(R) ≤ SFCD(R) +S.dim(R) 

It involves lemma  which relates the cotorsion dimension and the injective dimension of modules. 

Lemma 2.5 : Let R be a ring for any R module M the following inequalities  

Scd(M )≤ Sid(M ) ≤Scd(M )+Sdim(R) hold and true. 

Proof : First we prove the lemma we can assume that Scd(M )=m and Sdim(R )=n are finite. Let N 
be any R module and consider an exact sequence 0→F→Pn-1→………→P0→N→0 where Pi are 
projective modules and then F is a flat module. Since Sdim(R )=n. 

We have 𝐸𝑥𝑡𝑅𝑚+𝑛+1 (N,M)≅ 𝐸𝑥𝑡𝑅𝑚+1(F,M)=0. Since ScdR(M )=n therefore SidR(M) ≤ m+n 

 

Now we prove Theorem 2.4 

Let SFID(R )=n is finite. M be an R module with finite cotorsion dimension from lemma  
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Sid(M ) ≤ Scd(M )+Sdim(R ) which is finite then Sid(M ) is finite and so Scd(M ) ≤Sid(M ) ≤ 𝑛 

We prove SFID(R ) ≤SFCD(R )+ Sdim(R ) 

Let Sdim(R )=n, SFCD(R )=m are finite. Let M be an R module with finite injective module 
dimension then from lemma Sid(M) ≤Scd(M )+Sdim(R ) ≤m+n. 

3. Strong n-Perfectness in Ring Construction 

Firstly we compute the strong global cotorsion dimension of polynomial ring and family of 
polynomial rings. 

Theorem 3.1 ; Let R[X1,X2………Xn] be a polynomial ring in n indeterminates over a ring R then 
for a positive integer m , R is m strong perfect if and only if R[X1,X2………..Xn] is m+n Perfect 
strongly. 

Scgldim(R[X1,X2,……..Xn]) = Scgldim(R )+n 

Proposition 3.2 : Let (Ri) where i=1,2,3,…….m be a family of ring S then  ∏𝑖=1
𝑚 Ri is a strong n 

Perfect ring if and only if Ri is a strong n Perfect  ring for each i=1,2,3……..m. 

Proof : Let (Ri) where i=1,2,3……m be a family of rings and Mi be an Ri Module for i=1,2,3…..m. 
we have  

SpdR1xR2(M1xM2) = Sup{ SpdR1(M1);SpdR2(M2)}………………………………………….(1) 

SfdR1xR2(M1xM2)  =Sup{ SfdR1(M1); SfdR2(M2)}……………………………………………(2) 

SidR1xR2(M1xM2)  = Sup{SidR1(M1); SidR2(M2)}…………………………………………….(3) 

We prove theorem by induction method. Let it is true for m=2. Let R1 and R2 be two rings such 
that R1xR2 is a strong n-Perfect and let M1 be an R1 module such that SfdR1(M1) ≤ 𝑛, let M2 be 
an R2 module such that SfdR2(M2) ≤ 𝑛 then SfdR1xR2(M1xM2)= Sup{sfdR1(M1); SfdR2(M2)} by (2) 
. 

SpdR1xR2(M1xM2) ≤ 𝑛 since R1xR2 is strong n-Perfect thus 
SpdR1xR2(M1xM2)=Sup{SpdR1(M1);SpdR2(M2)} therefore SpdR1(M1) ≤ 𝑛 and SpdR2(M2) ≤ 𝑛 
and so R1 and R2 are strong n perfect rings thus SidR1xR2(M1xM2) ≤ 𝑛 since R1xR2 is strong n-
Perfect therefore SidR1xR2(M1xM2)=Sup{SidR1(M1); SidR2(M2)} by (3) hence SidR1(M1)≤ 𝑛 and 
SidR2(M2) ≤ 𝑛. 

Conversely : let R1 and R2 be two strong n-Perfect rings. Let M1xM2 be an R1xR2 module where 
Mi is an Ri module for each i=1,2 such that SfdR1xR2(M1xM2) ≤ 𝑛 thus SfdR1(M1) ≤ 𝑛, 
SfdR2(M2) ≤ 𝑛 and SpdR1xR2(M1xM2) ≤ 𝑛 thus SpdR1(M1) ≤ 𝑛 

SpdR2(M2) ≤ 𝑛 and SidR1xR2(M1xM2) ≤ 𝑛 thus SidR1(M1) ≤ 𝑛, SidR2(M2) ≤ 𝑛 because R1 and 
R2 are strong n-Perfect ring and so R1x R2 is a strong n-Perfect ring. 

Cotorsion dimension under change of rings 

Theorem 4.1 : let β: Ri⟶Si be a surjective ring homomorphism where Ri and Si be family of rings 
R and S , i=1,2,3….m then  

1. If MSi is a rinht Strong Si module then Scd(MRi) ≤Scd(MSi)moreover if SRi is a flat right R 
module then Scd(MSi)= Scd(MRi) 

2.  If SRi is a flat right Ri module and MRi is a cotorsion right Ri module then HomRi(Si,Mi) is a 
cotorsion right right Si modle and hence a cotorsion right Ri module where i=1,2,3,……..m 

Proof :  
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 1. We may assume Scd(MSi)=n<∞ there exist an exact sequence   

0⟶Mi⟶ 𝐶𝑖0 ⟶ 𝐶𝑖1 ⟶ 𝐶𝑖2 ⟶…………..⟶ 𝐶𝑖𝑛−1 ⟶ 𝐶𝑖𝑛 ⟶0 

Where 𝐶𝑗 is a cotorsion right Si module , j=1,2,……n each 𝐶𝑗 is also cotorsion as a right Ri 
module so Scd(MRi) ≤ 𝑛. 

If SRi is a flat right Si module we claim Scd(MSi) ≤Scd(MRi). We assume Scd(MRi)=n<∞. Let Fi be 
a flat right Si module then Fi is a fat right Ri module thus 𝐸𝑥𝑡𝑆𝑖𝑛+1(FSi, MSi)= 𝐸𝑥𝑡𝑅𝑖𝑛+1(FRi,MRi)=0 
therefore Scd(MSi) ≤ 𝑛 and hence Scd(MSi)=Scd(MRi) 

2 by hypothesis 𝐸𝑥𝑡𝑅𝑖1 (Si,Mi) =0 let X be a flat right Si module then X is a flat right Ri moue thus 
𝐸𝑥𝑡𝑆𝑖𝑛+1(X,HomR(Si,Mi)= 𝐸𝑥𝑡𝑅𝑖𝑛+1(X,Mi)=0 

Therefore HomR(Si,Mi) is a cotorion right Si module and hence a cotorsion right Ri module.  

Corollary 4.2  : Let π: Ri⟶Si bea surjective ring homomorphism and SRi is a flat right Ri module 
then r.cotD(Si) ≤ r.cotD(Ri) 
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